M18/4/PHYSI/HP2/ENG/TZ1/XX/M

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

May 2018

Physics

Higher level

Paper 2

https://xtremepape.rs/

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

(Questi	ion	Answers	Notes	Total
1.	а		use of conservation of energy OR $v^2 = u^2 + 2as \checkmark$ $v = (\sqrt{2 \times 60.0 \times 9.81}) = 34.3 \text{ sms}^{-1} \checkmark \checkmark$		2
1.	b	i	use of impulse $F_{ave} \times \Delta t = \Delta p$ <i>OR</i> use of $F = ma$ with average acceleration <i>OR</i> $F = \frac{80.0 \times 34.3}{0.759} \checkmark$ $3620 \ll N \gg \checkmark$	Allow ECF from (a).	2
1.	b	ii	upwards ✓ clearly longer than weight ✓	For second marking point allow ECF from (b)(i) providing line is upwards.	2
1.	b	iii	3620 + 80.0 × 9.81 ✓ 4400 «N» ✓	Allow ECF from (b)(i).	2

(Question 1 continued)

1.	С	i	(loss in) gravitational potential energy (of block) into kinetic energy (of block) \checkmark	<u>Must</u> see names of energy (gravitational potential energy and kinetic energy) – Allow for reasonable variations of terminology (eg energy of motion for KE).	1
1.	C	ii	(loss in) gravitational potential and kinetic energy of block into elastic potential energy of rope ✓	See note for 1(c)(i) for naming convention. <u>Must</u> see either the block or the rope (or both) mentioned in connection with the appropriate energies.	1
1.	d		k can be determined using $EPE = \frac{1}{2}kx^2 \checkmark$ correct statement or equation showing GPE at A = EPE at C OR (GPE + KE) at B = EPE at C ✓	Candidate must clearly indicate the energy associated with either position A or B for MP2.	2

(Question 1 continued)

1.	е	i	$T = 2\pi \sqrt{\frac{80.0}{400}} = 2.81 \text{ (s)} \checkmark$ time = $\frac{T}{4} = 0.702 \text{ (s)} \checkmark$	Award [0] for kinematic solutions that assume a constant acceleration.	2
1.	e	ii	ALTERNATIVE 1 $\omega = \frac{2\pi}{2.81} = 2.24 \text{ wrads}^{-1} \text{ w} $ $v = 2.24 \times 3.50 = 7.84 \text{ wrs}^{-1} \text{ w} $ ALTERNATIVE 2 $\frac{1}{2}kx^{2} = \frac{1}{2}mv^{2} OR \frac{1}{2}400 \times 3.5^{2} = \frac{1}{2}80v^{2} $ $v = 7.84 \text{ wrs}^{-1} \text{ w} $	Award [0] for kinematic solutions that assume a constant acceleration. Allow ECF for T from (e)(i).	2

2.	а		«3.0×8.31×290 0.15 48 «kPa» ✓		1
2.	b	i	mass = $\left(\frac{860}{3100 \times 23}\right) = 0.012 \text{ kg} \text{ s}$		1
2.	b	ii	ALTERNATIVE 1 average kinetic energy = $\frac{3}{2}$ 1.38×10 ⁻²³ ×313 = 6.5×10 ⁻²¹ «J» \checkmark number of particles = 3.0×6.02×10 ²³ = 1.8×10 ²⁴ \checkmark total kinetic energy = 1.8×10 ²⁴ ×6.5×10 ⁻²¹ = 12 «kJ» \checkmark ALTERNATIVE 2 ideal gas so $U = KE \checkmark$ $KE = \frac{3}{2}$ 8.31×313×3 \checkmark total kinetic energy = 12 «kJ» \checkmark		3
2.	C		Iarger temperature implies larger (average) speed/larger (average) KE of molecules/particles/atoms ✓ increased force/momentum transferred to walls (per collision) / more frequent collisions with walls ✓ increased force leads to increased pressure because P=F/A (as area remains constant) ✓	Ignore any mention of PV=nRT	3

3.	а	i	superposition of light from each slit / interference of light from both slits \checkmark with path/phase difference of any half-odd multiple of wavelength/any odd multiple of π (in words or symbols) \checkmark producing destructive interference \checkmark	<i>Ignore any reference to crests and troughs.</i>	3
3.	а	ii	light waves (from slits) must have constant phase difference / no phase difference / be in phase \checkmark	OWTTE	1
3.	а	iii	evidence of solving for $D \ll D = \frac{sd}{\lambda} \gg \checkmark$ $\ll \frac{4.50 \times 10^{-3} \times 0.300 \times 10^{-3}}{633.0 \times 10^{-9}} \times 2 \gg = 4.27 \ll \checkmark$	Award [1] max for 2.13 m.	2

(Question 3 continued)

3.	b	i	$\sin \theta = \frac{4 \times 633.0 \times 10^{-9}}{0.300 \times 10^{-3}} \checkmark$ $\theta = 0.0084401 \checkmark$ final answer to three sig figs (<i>eg</i> 0.00844 or 8.44 x 10 ⁻³) \checkmark	Allow ECF from (a)(iii). Award [1] for 0.121 rad (can award MP3 in addition for proper sig fig) Accept calculation in degrees leading to 0.481 degrees. Award MP3 for <u>any</u> answer expressed to 3sf.	3
3.	b	ii	use of diffraction formula $\ll b = \frac{\lambda}{\theta} \gg$ OR $\frac{633.0 \times 10^{-9}}{0.00844} \checkmark$ $\ll = 7.5 \ll 00 \gg \times 10^{-2} \ll mm \checkmark$	Allow ECF from (b)(i).	2

(Question 3 continued)

3.	С		wavelength increases (so frequency decreases) / light is redshifted \checkmark galaxy is moving away from Earth \checkmark	Allow ECF for MP2 (ie wavelength decreases so moving towards).	2
3.	d	i	$\frac{633.0}{1.33} = 476 \text{ snm} \text{ s}$		1
3.	d	ii	distance between peaks decreases ✓ intensity decreases ✓		2

4.	а		1.7×10 ⁻⁸ × $\frac{0.10}{(0.02×10^{-2})^2}$ ✓ 0.043 «Ω» ✓		2
4.	b		$v \ll \frac{I}{neA} = \frac{2.0}{8.5 \times 10^{22} \times 1.60 \times 10^{-19} \times 0.02^2} \checkmark$ 0.37 \cons^{-1} \c		2
4.	С	i	V = RI = 0.086 eV s $\frac{V}{d} = \frac{0.086}{0.10} = 0.86 \text{ eV} \text{ m}^{-1} \text{ s} $	Allow ECF from 4(a). Allow ECF from MP1.	2
4.	C	ii	ALTERNATIVE 1 clear use of Ohm's Law (V=IR) \checkmark clear use of $R = \frac{\rho L}{A} \checkmark$ combining with $I = nAve$ and $V = EL$ to reach result. \checkmark ALTERNATIVE 2 attempts to substitute values into equation. \checkmark correctly calculates LHS as 4.3 x 10 ⁹ . \checkmark correctly calculates RHS as 4.3 x 10 ⁹ . \checkmark	For ALTERNATIVE 1 look for: $V = IR$ $R = \frac{\rho L}{A}$ $V = EL$ $I = nAve$ $V = I\frac{\rho L}{A}$ $EL = I\frac{\rho L}{A}$ $E = nAve\frac{\rho}{A} = nve\rho$ $\frac{v}{E} = \frac{1}{ne\rho}$	3

5.	а		out of the page plane / \odot 🗸	Do not accept just "up" or "outwards".	1
5.	b		$1.60 \times 10^{-19} \times 6.8 \times 10^5 \times 8.5 = 9.2 \times 10^{-13} \text{ «N» }$		1
5.	С	i	the magnetic force does not do work on the electron hence does not change the electron's kinetic energy <i>OR</i> the magnetic force/acceleration is at right angles to velocity √		1
5.	С	ii	the velocity of the electron is at right angles to the magnetic field \checkmark (therefore) there is a centripetal acceleration / force acting on the charge \checkmark	OWTTE	2

6.	а		${}^{10}_{4}\text{Be} \rightarrow {}^{10}_{5}\text{B} + {}^{0}_{-1}\text{e} + {}^{0}_{0}\overline{V}_{e}$ antineutrino <i>AND</i> charge <i>AND</i> mass number of electron ${}^{0}_{-1}\text{e}$, $\overline{V} \checkmark$ conservation of mass number <i>AND</i> charge ${}^{10}_{5}\text{B}$, ${}^{10}_{4}\text{Be} \checkmark$	Do not accept V . Accept \overline{V} without subscript e.	2
6.	b	i	correct shape <i>ie</i> increasing from 0 to about $0.80N_0 \checkmark$ crosses given line at $0.50N_0 \checkmark$ number of nuclei $N_0 \xrightarrow{0}{} 0.75 N_0 \xrightarrow{0}{} 0.50 N_0 \xrightarrow{0}{} 0.25 N_0 \xrightarrow{0}{} 0.25$		2

(Question 6b continued)

6.	b	ii	ALTERNATIVE 1	Must see at least one extra sig fig in	
			fraction of Be = $\frac{1}{8}$, 12.5%, or 0.125 \checkmark	final answer.	
			therefore 3 half lives have elapsed \checkmark		
			$t_{\frac{1}{2}} = \frac{4.3 \times 10^{6}}{3} = 1.43 \times 10^{6} \text{ and } 1.4 \times 10^{6} \text{ and } y $		
			ALTERNATIVE 2		3
			fraction of Be = $\frac{1}{8}$, 12.5%, or 0.125 \checkmark		
			$\frac{1}{8} = e^{-\lambda} \left(4.3 \times 10^6 \right) \text{ leading to } \lambda = 4.836 \times 10^{-7} \text{ sy}^{-1} \text{ s} \checkmark$		
			$\frac{ln2}{\lambda} = 1.43 \times 10^6 \text{ (y)} \checkmark$		
6.	b	iii	$\lambda \ll = \frac{\ln 2}{1.4 \times 10^6} \approx = 4.95 \times 10^{-7} \ll y^{-1} \gg \checkmark$	Allow ECF from MP1	
			rearranging of $A = \lambda N_0 e^{-\lambda t}$ to give $-\lambda t = \ln \frac{8.0 \times 10^{-3} \times 365 \times 24 \times 60 \times 60}{4.95 \times 10^{-7} \times 7.6 \times 10^{11}} = -0.400 \text{ s}$		3
			$t = \frac{-0.400}{-4.95 \times 10^{-7}} = 8.1 \times 10^5 \text{ (y)} \checkmark$		

(Question 6 continued)

6.	с	i	emission of (infrared) electromagnetic/infrared energy/waves/radiation. 🗸		1
6.	с	ii	the (peak) wavelength of emitted em waves depends on temperature of emitter/reference to Wein's Law ✓ so frequency/color depends on temperature ✓		2
6.	С	iii	$\lambda = \frac{2.90 \times 10^{-3}}{253} \checkmark$ = 1.1×10 ⁻⁵ «m» ✓	Allow ECF from MP1 (incorrect temperature).	2
6.	С	iv	from the laboratory to the sample ✓ conduction – contact between ice and lab surface. <i>OR</i> convection – movement of air currents ✓	Must clearly see direction of energy transfer for MP1. Must see more than just words "conduction" or "convection" for MP2.	2
6.	с	v	correct units for Intensity (allow <i>W</i> , Nms^{-1} <i>OR</i> Js^{-1} <i>in numerator</i>) \checkmark rearrangement into proper SI units = kgs ⁻³ \checkmark	Allow ECF for MP2 if final answer is in fundamental units.	2

7.	а	$d = \left(\frac{8.85 \times 10^{-12} \times 0.025^2}{4.3 \times 10^{-12}}\right) = 1.3 \times 10^{-3} \text{ m/s} \checkmark$	1
7.	b	6.9 x 10 ⁻¹¹ < <c>> ✓ negative charge/sign ✓</c>	2
7.	C	charge increases ✓ because capacitance increases <i>AND</i> pd remains the same.✓	2

(Question 7 continued)

7.	d	ALTERNATIVE 1	Allow ECF from MP1 and MP2.	
		$\varepsilon_s = \frac{1200}{100} \times 220 \checkmark$	Award [2] max for 12.96 V (reversing N_p and N_s).	
		= 2640 «V» ✓		
		$V_{rms} = \frac{2640}{\sqrt{2}} = 1870 \text{eV} \gg \checkmark$		
		ALTERNATIVE 2		3
		(Primary) $V_{rms} = \frac{220}{\sqrt{2}} = 156 \ll V \gg \checkmark$		
		(Secondary) $V_{rms} = \frac{156 \times 1200}{100} \checkmark$		
		V _{rms} = 1870 «V» ✓		
7.	е	step-up transformers increase voltage/step-down transformers decrease voltage \checkmark		
		(step-up transformers increase voltage) from plants to transmission lines / (step-down transformers decrease voltage) from transmission lines to final utilizers \checkmark		3 max
		this decreases current (in transmission lines) \checkmark		
		to minimize energy/power losses in transmission \checkmark		

8.	а		$E_1 = -13.6 \text{ (eV)} E_2 = -\frac{13.6}{4} = -3.4 \text{ (eV)} \checkmark$ energy of photon is difference $E_2 - E_1 = 10.2 \text{ (a)} \checkmark$	Must see at least 10.2 eV.	2
8.	b	i	$10-5.1 = 4.9 \text{ weV} \gg \checkmark$ $4.9 \times 1.6 \times 10^{-19} = 7.8 \times 10^{-19} \text{ wJ} \gg \checkmark$	Allow 5.1 if 10.2 is used to give $8.2 \times 10^{-19} \text{ sJ}$.	2
8.	b	ii	EPE produced by battery 🗸 exceeds maximum KE of electrons / electrons don't have enough KE 🗸	For first mark, accept explanation in terms of electric potential energy difference of electrons between surface and plate.	2
8.	b	iii	4.9«V» ✓	Allow 5.1 if 10.2 is used in (b)(i). Ignore sign on answer.	1

(Question 8 continued)

