Markscheme

May 2018

Physics

Higher level

Paper 2

18 pages

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question			Answers	Notes	Total
1.	a		use of conservation of energy OR $\begin{aligned} & v^{2}=u^{2}+2 a s \checkmark \\ & v=« \sqrt{2 \times 60.0 \times 9.81}>=34.3<\mathrm{ms}^{-1} » \end{aligned}$		2
1.	b	i	use of impulse $F_{\text {ave }} \times \Delta t=\Delta p$ OR use of $F=$ ma with average acceleration OR $\begin{aligned} & F=\frac{80.0 \times 34.3}{0.759} \\ & 3620 « N » \quad \end{aligned}$	Allow ECF from (a).	2
1.	b	ii	upwards $\sqrt{ }$ clearly longer than weight \checkmark	For second marking point allow ECF from (b)(i) providing line is upwards.	2
1.	b	iii	$\begin{aligned} & 3620+80.0 \times 9.81 \checkmark \\ & 4400 « N » \checkmark \end{aligned}$	Allow ECF from (b)(i).	2

(continued...)
(Question 1 continued)

1.	c	i	(loss in) gravitational potential energy (of block) into kinetic energy (of block) \checkmark	Must see names of energy (gravitational potential energy and kinetic energy) Allow for reasonable variations of terminology (eg energy of motion for KE).	1
1.	C	ii	(loss in) gravitational potential and kinetic energy of block into elastic potential energy of rope \checkmark	See note for 1(c)(i) for naming convention. Must see either the block or the rope (or both) mentioned in connection with the appropriate energies.	1
1.	d		k can be determined using EPE $=\frac{1}{2} k x^{2} \checkmark$ correct statement or equation showing GPE at $A=E P E$ at C OR $(G P E+K E)$ at $B=E P E$ at $C \checkmark$	Candidate must clearly indicate the energy associated with either position A or B for MP2.	2

(Question 1 continued)

1.	e	i	$\begin{aligned} & T=2 \pi \sqrt{\frac{80.0}{400}}=2.81 « \mathrm{~s} » \\ & \text { time }=\frac{T}{4}=0.702 « \mathrm{~s} » \end{aligned}$	Award [0] for kinematic solutions that assume a constant acceleration.	2
1.	e	ii	ALTERNATIVE 1 $\begin{aligned} & \omega=\frac{2 \pi}{2.81}=2.24 \text { «rads }{ }^{-1} » \checkmark \\ & v=2.24 \times 3.50=7.84<\mathrm{ms}^{-1} » \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & \frac{1}{2} k x^{2}=\frac{1}{2} m v^{2} \text { OR } \frac{1}{2} 400 \times 3.5^{2}=\frac{1}{2} 80 v^{2} \\ & v=7.84 « \mathrm{~ms}^{-1} » \end{aligned}$	Award [0] for kinematic solutions that assume a constant acceleration. Allow ECF for T from (e)(i).	2

2.	a		$\begin{aligned} & \text { «.0×8.31×290} \\ & 0.15 \\ & 48 \text { «kPa» } \checkmark \end{aligned}$		1
2.	b	i	$\text { mass }=« \frac{860}{3100 \times 23}=» 0.012 \text { «kg» } \checkmark$		1
2.	b	ii	ALTERNATIVE 1 $\begin{aligned} & \text { average kinetic energy }=\frac{3}{2} 1.38 \times 10^{-23} \times 313=6.5 \times 10^{-21} \text { «ل» } \\ & \text { number of particles }=3.0 \times 6.02 \times 10^{23}=1.8 \times 10^{24} \checkmark \\ & \text { total kinetic energy }=1.8 \times 10^{24} \times 6.5 \times 10^{-21}=12 « \mathrm{~kJ} » \end{aligned}$ ALTERNATIVE 2 ideal gas so $U=K E \checkmark$ $K E=\frac{3}{2} 8.31 \times 313 \times 3 \checkmark$ total kinetic energy $=12$ «kJ» \checkmark		3
2.	c		larger temperature implies larger (average) speed/larger (average) KE of molecules/particles/atoms \checkmark increased force/momentum transferred to walls (per collision) / more frequent collisions with walls \checkmark increased force leads to increased pressure because $P=F / A$ (as area remains constant) \checkmark	Ignore any mention of $P V=n R T$	3

3.	a	i	superposition of light from each slit / interference of light from both slits \boldsymbol{V} with path/phase difference of any half-odd multiple of wavelength/any odd multiple of π (in words or symbols) \checkmark producing destructive interference \checkmark	Ignore any reference to crests and troughs.	3
3.	a	ii	light waves (from slits) must have constant phase difference / no phase difference / be in phase \checkmark	OWTTE	1
3.	a	iii	evidence of solving for D « $D=\frac{s d}{\lambda} » \checkmark$ $\text { « } \frac{4.50 \times 10^{-3} \times 0.300 \times 10^{-3}}{633.0 \times 10^{-9}} \times 2 »=4.27 \text { «m» }$	Award [1] max for 2.13 m .	2

(continued...)
(Question 3 continued)

3.	b	i	$\begin{aligned} & \sin \theta=\frac{4 \times 633.0 \times 10^{-9}}{0.300 \times 10^{-3}} \\ & \theta=0.0084401 \ldots \checkmark \end{aligned}$ final answer to three sig figs (eg 0.00844 or 8.44×10^{-3}) \checkmark	Allow ECF from (a)(iii). Award [1] for 0.121 rad (can award MP3 in addition for proper sig fig) Accept calculation in degrees leading to 0.481 degrees. Award MP3 for any answer expressed to $3 s f$.	3
3.	b	ii	use of diffraction formula « $b=\frac{\lambda}{\theta}$ " OR $\begin{aligned} & \frac{633.0 \times 10^{-9}}{0.00844} \checkmark \\ & «=» 7.5 « 00 » \times 10^{-2} \text { «mm» } \end{aligned}$	Allow ECF from (b)(i).	2

(continued...)
(Question 3 continued)

| 3. | c | | wavelength increases (so frequency decreases) / light is redshifted \checkmark
 galaxy is moving away from Earth \checkmark | Allow ECF for MP2 (ie wavelength
 decreases so moving towards). |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3. | d | \mathbf{i} | $\frac{633.0}{1.33}=476$ «nm» \checkmark | $\mathbf{1}$ |
| 3. | d | ii | distance between peaks decreases \checkmark
 intensity decreases \checkmark | $\mathbf{2}$ |

4.	a		$\begin{aligned} & 1.7 \times 10^{-8} \times \frac{0.10}{\left(0.02 \times 10^{-2}\right)^{2}} \\ & 0.043 « \Omega » \end{aligned}$		2
4.	b		$\begin{aligned} & v «=\frac{I}{n e A} »=\frac{2.0}{8.5 \times 10^{22} \times 1.60 \times 10^{-19} \times 0.02^{2}} \\ & 0.37 « \mathrm{~cm} \mathrm{~s}^{-1} » \end{aligned}$		2
4.	C	i	$\begin{aligned} & V=R I=0.086 « V » \checkmark \\ & \text { « } \frac{V}{d}=\frac{0.086}{0.10}=» 0.86 « V^{-1} » \end{aligned}$	Allow ECF from 4(a). Allow ECF from MP1.	2
4.	c	ii	ALTERNATIVE 1 clear use of Ohm's Law ($V=I R$) \checkmark clear use of $R=\frac{\rho L}{A} \checkmark$ combining with $I=n A v e$ and $V=E L$ to reach result. \checkmark ALTERNATIVE 2 attempts to substitute values into equation. \checkmark correctly calculates LHS as 4.3×10^{9}. \checkmark correctly calculates RHS as 4.3×10^{9}. \checkmark	For ALTERNATIVE 1 look for: $\begin{aligned} & V=I R \\ & R=\frac{\rho L}{A} \\ & V=E L \\ & I=n A v e \\ & V=I \frac{\rho L}{A} \\ & E L=I \frac{\rho L}{A} \\ & E=I \frac{\rho}{A} \\ & E=n A v e \frac{\rho}{A}=n v e \rho \\ & \frac{v}{E}=\frac{1}{n e \rho} \end{aligned}$	3

5.	a		out of the page plane / $\odot \checkmark$	Do not accept just "up" or "outwards".	1
5.	b		$1.60 \times 10^{-19} \times 6.8 \times 10^{5} \times 8.5=9.2 \times 10^{-13}$ «N》		1
5.	c	i	the magnetic force does not do work on the electron hence does not change the electron's kinetic energy OR the magnetic force/acceleration is at right angles to velocity \checkmark		1
5.	C	ii	the velocity of the electron is at right angles to the magnetic field \checkmark (therefore) there is a centripetal acceleration / force acting on the charge \checkmark	OWTTE	2

6.	a		${ }_{4}^{10} \mathrm{Be} \rightarrow{ }_{5}^{10} \mathrm{~B}+{ }_{-1}^{0} \mathrm{e}+{ }_{0}^{0} \overline{\mathrm{~V}}_{\mathrm{e}}$ antineutrino AND charge $\boldsymbol{A N D}$ mass number of electron ${ }_{-1}^{0} \mathrm{e}, \overline{\mathrm{V}} \boldsymbol{\checkmark}$ conservation of mass number AND charge ${ }_{5}^{10} \mathrm{~B},{ }_{4}^{10} \mathrm{Be} \checkmark$	Do not accept V. Accept \bar{V} without subscript e.	2
6.	b	i	correct shape ie increasing from 0 to about $0.80 \mathrm{~N}_{0} \checkmark$ crosses given line at $0.50 \mathrm{~N}_{0} \checkmark$ number of nuclei		2

(continued...)
(Question $6 b$ continued)

6.	b	ii	ALTERNATIVE 1 fraction of $\mathrm{Be}=\frac{1}{8}, 12.5 \%$, or $0.125 \checkmark$ therefore 3 half lives have elapsed \checkmark $t_{\frac{1}{2}}=\frac{4.3 \times 10^{6}}{3}=1.43 \times 10^{6} 《 \approx 1.4 \times 10^{6} » « y \gg$ ALTERNATIVE 2 fraction of $\mathrm{Be}=\frac{1}{8}, 12.5 \%$, or $0.125 \checkmark$ $\frac{1}{8}=e^{-\lambda}\left(4.3 \times 10^{6}\right)$ leading to $\lambda=4.836 \times 10^{-7}<y^{-1} » \checkmark$ $\frac{\ln 2}{\lambda}=1.43 \times 10^{6}$ «y» \checkmark	Must see at least one extra sig fig in final answer.	3
6.	b	iii	$\begin{aligned} & \lambda «=\frac{\ln 2}{1.4 \times 10^{6}} »=4.95 \times 10^{-7} « \mathrm{y}^{-1} » \checkmark \\ & \text { rearranging of } A=\lambda N_{0} \mathrm{e}^{-\lambda t} \text { to give }-\lambda t=\ln \frac{8.0 \times 10^{-3} \times 365 \times 24 \times 60 \times 60}{4.95 \times 10^{-7} \times 7.6 \times 10^{11}} \text { «= }=-0.400 » \\ & t=\frac{-0.400}{-4.95 \times 10^{-7}}=8.1 \times 10^{5} « \mathrm{y} » \end{aligned}$	Allow ECF from MP1	3

(Question 6 continued)

6.	c	i	emission of (infrared) electromagnetic/infrared energy/waves/radiation. \checkmark		1
6.	c	ii	the (peak) wavelength of emitted em waves depends on temperature of emitter/reference to Wein's Law \checkmark so frequency/color depends on temperature \checkmark		2
6.	c	iii	$\begin{aligned} & \lambda=\frac{2.90 \times 10^{-3}}{253} \checkmark \\ & =1.1 \times 10^{-5} \text { «m» } \end{aligned}$	Allow ECF from MP1 (incorrect temperature).	2
6.	c	iv	from the laboratory to the sample \checkmark conduction - contact between ice and lab surface. OR convection - movement of air currents \checkmark	Must clearly see direction of energy transfer for MP1. Must see more than just words "conduction" or "convection" for MP2.	2
6.	c	v	correct units for Intensity (allow $\mathrm{W}, \mathrm{Nms}^{-1} \mathrm{OR}^{-1}$ in numerator) \checkmark rearrangement into proper SI units $=\mathrm{kgs}^{-3} \checkmark$	Allow ECF for MP2 if final answer is in fundamental units.	2

(continued...)
(Question 7 continued)

8.	a		$E_{1}=-13.6 « \mathrm{eV} » E_{2}=-\frac{13.6}{4}=-3.4 « \mathrm{eV} » \downarrow$ energy of photon is difference $E_{2}-E_{1}=10.2 « \approx 10 \mathrm{eV}$ » \checkmark	Must see at least 10.2 eV .	2
8.	b	i	$\begin{aligned} & 10-5.1=4.9 \text { «eV» } \\ & 4.9 \times 1.6 \times 10^{-19}=7.8 \times 10^{-19} \text { «J» } \end{aligned}$	Allow 5.1 if 10.2 is used to give 8.2×10^{-19} «J».	2
8.	b	ii	EPE produced by battery \checkmark exceeds maximum KE of electrons / electrons don't have enough KE \checkmark	For first mark, accept explanation in terms of electric potential energy difference of electrons between surface and plate.	2
8.	b	iii	4.9 «V》	Allow 5.1 if 10.2 is used in (b)(i). lgnore sign on answer.	1

(continued...)
(Question 8 continued)

8.	C	i	two equally spaced vertical lines (judge by eye) at approximately $1 / 3$ and $2 / 3 \checkmark$ labelled correctly \checkmark		2
8.	C	ii	kinetic energy at collecting plate $=0.9$ «eV» \checkmark $\text { speed }=« \sqrt{\frac{2 \times 0.9 \times 1.6 \times 10^{-19}}{9.11 \times 10^{-31}}} \gg 5.6 \times 10^{5}<\mathrm{ms}^{-1} » \checkmark$	Allow ECF from MP1	2

